题目内容
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线的交点为、,求的值.
【答案】(1);;(2)4
【解析】
(1)直接消去参数,将直线的参数方程化为普通方程,利用互化公式将曲线的极坐标方程转化为直角坐标方程;
(2)将直线的参数方程代入曲线的普通方程,得到,得出,,化简,代入韦达定理,即可求出结果.
解:(1)的参数方程消去参数,易得的普通方程为,
曲线:,
即,
∴,
所以曲线的直角坐标方程为:.
(2)的参数方程(为参数),
设对应参数为,对应参数为,
将的参数方程与联立得:,
得:,,
所以
即.
练习册系列答案
相关题目
【题目】
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求的分布列及期望