ÌâÄ¿ÄÚÈÝ
16£®¶ÔijУ¸ß¶þÄ꼶ѧÉúÊîÆڲμÓÉç»áʵ¼ù´ÎÊý½øÐÐͳ¼Æ£¬Ëæ»ú³éÈ¡MÃûѧÉú×÷ΪÑù±¾£¬µÃµ½ÕâMÃûѧÉú²Î¼ÓÉç»áʵ¼ùµÄ´ÎÊý£®¸ù¾Ý´ËÊý¾Ý×÷³öÁËƵÊýÓëƵÂʵÄͳ¼Æ±íºÍƵÂÊ·Ö²¼Ö±·½Í¼Èçͼ£º·Ö×é | ƵÊý | ƵÂÊ |
[10£¬15£© | 20 | 0.25 |
[15£¬20£© | 48 | n |
[20£¬25£© | m | p |
[25£¬30£© | 4 | 0.05 |
ºÏ¼Æ | M | 1 |
£¨2£©ÔÚËùÈ¡Ñù±¾ÖУ¬´Ó²Î¼ÓÉç»áʵ¼ùµÄ´ÎÊý²»ÉÙÓÚ20´ÎµÄѧÉúÖÐÈÎÑ¡3ÈË£¬¼Ç²Î¼ÓÉç»áʵ¼ù´ÎÊýÔÚÇø¼ä[25£¬30£©ÄÚµÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÆÚÍû£®
·ÖÎö £¨1£©¶ÁƵÂÊ·Ö²¼Ö±·½Í¼µÃ³ö¸÷×Ô¶ÔÓ¦µÄÖµ£®£¨2£©Çó³öxµÄËùÓпÉÄÜÈ¡ÖµºÍ¸÷×ԵĸÅÂÊ´Ó¶øµÃ³ö·Ö²¼ÁÐ
½â´ð ½â£º£¨1£©¿ÉµÃM=80£¬p=0.1£¬a=0.12£®----------£¨5·Ö£©
£¨2£©XµÄȡֵΪ0£¬1£¬2£¬3£®------------£¨6·Ö£©
$P£¨{X=0}£©=\frac{C_8^3}{{C_{12}^3}}=\frac{56}{220}=\frac{14}{55}$-----------------------------------------------------£¨7·Ö£©
$P£¨{X=1}£©=\frac{C_8^2C_4^1}{{C_{12}^3}}=\frac{112}{220}=\frac{28}{55}$---------------------------------------------------£¨8·Ö£©
$P£¨{X=2}£©=\frac{C_8^1C_4^2}{{C_{12}^3}}=\frac{48}{220}=\frac{12}{55}$----------------------------------------------------£¨9·Ö£©
$P£¨{X=3}£©=\frac{C_4^3}{{C_{12}^3}}=\frac{4}{220}=\frac{1}{55}$---------------------------------------------------£¨10·Ö£©
·Ö²¼ÁÐÈçÏ£º
X | 0 | 1 | 2 | 3 |
P | $\frac{14}{55}$$\frac{14}{55}$ | $\frac{28}{55}$ | $\frac{12}{55}$ | $\frac{1}{55}$ |
µãÆÀ ±¾Ì⿼²éµÄÊÇƵÂÊ·Ö²¼Ö±·½Í¼ºÍÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊôÖеµÌ⣬¸ß¿¼³£¿¼ÌâÐÍ
A£® | 1+i | B£® | 1-i | C£® | 1 | D£® | -1 |
A£® | 10 | B£® | 11 | C£® | 12 | D£® | 13 |
A£® | 11 | B£® | 12 | C£® | 22 | D£® | 23 |
A£® | {0£¬1£¬2£¬3£¬4} | B£® | {0£¬1£¬2£© | C£® | {1£¬2} | D£® | {3£¬4} |
A£® | Èô·½³Ìx2+x-m=0ÓÐʵ¸ù£¬Ôòm£¾0 | B£® | Èô·½³Ìx2+x-m=0ÓÐʵ¸ù£¬Ôòm¡Ü0 | ||
C£® | Èô·½³Ìx2+x-m=0ûÓÐʵ¸ù£¬Ôòm£¾0 | D£® | Èô·½³Ìx2+x-m=0ûÓÐʵ¸ù£¬Ôòm¡Ü0 |