题目内容
【题目】已知椭圆:()的左焦点为,是上一点,且与轴垂直,,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.
(1)求椭圆的方程.
(2)若过点的直线,互相垂直,且分别与椭圆交于点,,,四点,求四边形的面积的最小值.
【答案】(1);(2)
【解析】
(1)依题意可设,则有,解出即可;
(2)分类讨论,当,时,;
当,斜率存在时,设:,:,分别联立椭圆方程,利用韦达定理求出,,再根据面积公式以及基本不等式即可求出答案.
解:(1)依题意画出下图可设,,,
则有:,解得,
∴椭圆的标准方程为;
(2)①当,时,;
②当,斜率存在时,设:,:,分别联立椭圆方程,
联立得,
∴,,
∴,
同理,
∴,
当且仅当即即时等号成立,
故四边形的面积的最小值.
练习册系列答案
相关题目
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相关指数)