题目内容
【题目】已知函数.
(1)当时,求的单调区间;
(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.
【答案】(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.
【解析】
(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.
(1)函数
由条件得函数的定义域:,
当时,,
所以:,
时,,
当时,,当,时,,
则函数的单调增区间为:,单调递减区间为:,;
(2)由条件得:,,
由条件得有两根:,,满足,
△,可得:或;
由,可得:.
,
函数的对称轴为,,
所以:,;
,可得:,
,
,则:,
所以:;
所以:,
令,,,
则,
因为:时,,所以:在,上是单调递减,在,上单调递增,
因为:,(1),,(1),
所以,;
即的取值范围是:,;
,所以有,
则,;
所以当取到最小值时所对应的的值为;
练习册系列答案
相关题目