ÌâÄ¿ÄÚÈÝ
£¨2007•ÑîÆÖÇø¶þÄ££©£¨Àí£©ÉèбÂÊΪk1µÄÖ±ÏßL½»ÍÖÔ²C£º
+y2=1ÓÚA¡¢BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk1¡¢k2¶¼´æÔÚ£©£®
£¨1£©Çók1?k2µÄÖµ£®
£¨2£©°ÑÉÏÊöÍÖÔ²CÒ»°ã»¯Îª
+
=1
£¨a£¾b£¾0£©£¬ÆäËüÌõ¼þ²»±ä£¬ÊÔ²ÂÏëk1Óëk2¹Øϵ£¨²»ÐèÒªÖ¤Ã÷£©£®ÇëÄã¸ø³öÔÚË«ÇúÏß
-
=1£¨a£¾0£¬b£¾0£©ÖÐÏàÀàËƵĽáÂÛ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©·ÖÎö£¨2£©ÖеÄ̽¾¿½á¹û£¬²¢×÷³ö½øÒ»²½¸ÅÀ¨£¬Ê¹ÉÏÊö½á¹û¶¼ÊÇÄãËù¸ÅÀ¨ÃüÌâµÄÌØÀý£®
Èç¹û¸ÅÀ¨ºóµÄÃüÌâÖеÄÖ±ÏßL¹ýԵ㣬PΪ¸ÅÀ¨ºóÃüÌâÖÐÇúÏßÉÏÒ»¶¯µã£¬½èÖúÖ±ÏßL¼°¶¯µãP£¬ÇëÄãÌá³öÒ»¸öÓÐÒâÒåµÄÊýѧÎÊÌ⣬²¢ÓèÒÔ½â¾ö£®
x2 |
2 |
£¨1£©Çók1?k2µÄÖµ£®
£¨2£©°ÑÉÏÊöÍÖÔ²CÒ»°ã»¯Îª
x2 |
a2 |
y2 |
b2 |
£¨a£¾b£¾0£©£¬ÆäËüÌõ¼þ²»±ä£¬ÊÔ²ÂÏëk1Óëk2¹Øϵ£¨²»ÐèÒªÖ¤Ã÷£©£®ÇëÄã¸ø³öÔÚË«ÇúÏß
x2 |
a2 |
y2 |
b2 |
£¨3£©·ÖÎö£¨2£©ÖеÄ̽¾¿½á¹û£¬²¢×÷³ö½øÒ»²½¸ÅÀ¨£¬Ê¹ÉÏÊö½á¹û¶¼ÊÇÄãËù¸ÅÀ¨ÃüÌâµÄÌØÀý£®
Èç¹û¸ÅÀ¨ºóµÄÃüÌâÖеÄÖ±ÏßL¹ýԵ㣬PΪ¸ÅÀ¨ºóÃüÌâÖÐÇúÏßÉÏÒ»¶¯µã£¬½èÖúÖ±ÏßL¼°¶¯µãP£¬ÇëÄãÌá³öÒ»¸öÓÐÒâÒåµÄÊýѧÎÊÌ⣬²¢ÓèÒÔ½â¾ö£®
·ÖÎö£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k1x+b£¬´úÈëÍÖÔ²·½³Ì£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊý¹ØϵÇóÏÒÖеãMµÄ×ø±êΪ(-
£¬
)£¬´úÈë¿ÉµÃk2=-
£¬´Ó¶ø¿ÉÇó
£¨·¨¶þ£©£¨ÀûÓõã²î·¨£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£©£¬ÓÉ
x12+y12=1Óë
x22+y22=1×÷²îµÃ -
=
¿ÉÇó
£¨2£©ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
+
=1£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèK1¡¢k2¶¼´æÔÚ£©£®
Ôòk1£¬k2?µÄֵΪ
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
+
=1£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢Õû£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ´úÈë¿ÉÇók1k2=
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©ÓɵãA£¬BÔÚË«ÇúÏßÉÏ£¬ÔòÀûÓõã²î·¨¿ÉÇó
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
£®
2bk1 |
1+2k12 |
2b |
1+2k12 |
1 |
2k1 |
£¨·¨¶þ£©£¨ÀûÓõã²î·¨£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£©£¬ÓÉ
1 |
2 |
1 |
2 |
1 |
2 |
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
£¨2£©ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
x2 |
a2 |
y2 |
b2 |
Ôòk1£¬k2?µÄֵΪ
b2 |
a2 |
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©ÓɵãA£¬BÔÚË«ÇúÏßÉÏ£¬ÔòÀûÓõã²î·¨¿ÉÇó
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
m |
n |
½â´ð£º£¨½âÒ»£©£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k1x+b£¬´úÈëÍÖÔ²·½³Ì²¢ÕûÀíµÃ£º£¨1+2k12£©x2+4k1bx+2b2-2=0£¬£¨2·Ö£©
x1+x2=-
£¬ÓÖÖеãMÔÚÖ±ÏßÉÏ£¬ËùÒÔ
=k1•
)+b
´Ó¶ø¿ÉµÃÏÒÖеãMµÄ×ø±êΪ(-
£¬
)£¬k2=-
£¬ËùÒÔk1k2=-
£®£¨4·Ö£©
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£© Ôòx0=
£¬y0=
K2=
=
£¬k1=
£¨2·Ö£©
ÓÖ
x12+y12=1Óë
x22+y22=1×÷²îµÃ -
=
ËùÒÔ K1K2=-
£¨4·Ö£©
£¨2£©¶ÔÓÚÍÖÔ²£¬K1K2=-
£¨6·Ö£©
ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
+
=1£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèK1¡¢k2¶¼´æÔÚ£©£®
Ôòk1£¬k2?µÄֵΪ
£® £¨8·Ö£©
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
+
=1£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢ÕûÀíµÃ£º£¨b2-a2k12£©x2-2k1a2dx-£¨ad£©2-£¨ab£©2=0
(y1+y2)=
£¬
ËùÒÔK2=
=
=
£¬k1=
£¨2·Ö£©£¬¼´k1k2=
£¨10·Ö£©
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©
Ôòx0=
£¬y0=
£¬K2=
=
£¬k1=
£¨2·Ö£©
ÓÖÒòΪµãA£¬BÔÚË«ÇúÏßÉÏ£¬Ôò
-
=1Óë
-
=1×÷²îµÃ
=
=k1k2 ¼´k1k2=
£¨10·Ö£©
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
£®£¨12·Ö£©
Ìá³öÎÊÌâÓë½â¾öÎÊÌâÂú·Ö·Ö±ðΪ£¨3·Ö£©£¬Ìá³öÒâÒå²»´óµÄÎÊÌâ²»µÃ·Ö£¬½â¾öÎÊÌâµÄ·ÖÖµ²»µÃ³¬¹ýÌá³öÎÊÌâµÄ·ÖÖµ£®
Ìá³öµÄÎÊÌâÀýÈ磺ֱÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬µ±PÒìÓÚA£¬BÁ½µãʱ£¬Èç¹ûÖ±ÏßPA£¬PBµÄбÂʶ¼´æÔÚ£¬ÔòËüÃÇбÂʵĻýΪÓëµãPÎ޹صĶ¨Öµ£®£¨15·Ö£©
½â·¨1£ºÉèÖ±Ïß·½³ÌΪy=kx£¬A£¬BÁ½µã×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨-x1£¬-y1£©£¬Ôòy1=kx1
°Ñy=kx´úÈëmx2+ny2=1µÃ£¨m+nk2£©x2=1£¬
KPA•KPB=
=
£¬
ËùÒÔKPA•KPB=
=
=-
£¨18·Ö£©
Ìá³öµÄÎÊÌâµÄÀýÈ磺ֱÏßL£ºy=x£¬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£®ÊÔÎÊʹ¡ÏAPB=30¡ãµÄµãPÊÇ·ñ´æÔÚ£¿£¨13·Ö£©
ÎÊÌâÀýÈ磺1£©Ö±ÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóPA+PBµÄÖµ£®
2£©Ö±Ïßl¹ýԵ㣬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóS¡÷PABµÄ×îÖµ£®
x1+x2=-
4k1b |
1+2k2 |
y1+y2 |
2 |
x1+x2 |
2 |
´Ó¶ø¿ÉµÃÏÒÖеãMµÄ×ø±êΪ(-
2bk1 |
1+2k12 |
2b |
1+2k12 |
1 |
2k1 |
1 |
2 |
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£© Ôòx0=
x1+x2 |
2 |
y1+y2 |
2 |
K2=
y0 |
x0 |
y1+y2 |
x1+x2 |
y2-y1 |
x2-x1 |
ÓÖ
1 |
2 |
1 |
2 |
1 |
2 |
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
ËùÒÔ K1K2=-
1 |
2 |
£¨2£©¶ÔÓÚÍÖÔ²£¬K1K2=-
b2 |
a2 |
ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
x2 |
a2 |
y2 |
b2 |
Ôòk1£¬k2?µÄֵΪ
b2 |
a2 |
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
x2 |
a2 |
y2 |
b2 |
1 |
2 |
db2 |
b2-a2k12 |
ËùÒÔK2=
y0 |
x0 |
y1+y2 |
x1+x2 |
b2 |
k1a2 |
y2-y1 |
x2-x1 |
b2 |
a2 |
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©
Ôòx0=
x1+x2 |
2 |
y1+y2 |
2 |
y0 |
x0 |
y1+y2 |
x1+x2 |
y2-y1 |
x2-x1 |
ÓÖÒòΪµãA£¬BÔÚË«ÇúÏßÉÏ£¬Ôò
x12 |
a2 |
y12 |
b2 |
x22 |
a2 |
y22 |
b2 |
a2 |
b2 |
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
b2 |
a2 |
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
m |
n |
Ìá³öÎÊÌâÓë½â¾öÎÊÌâÂú·Ö·Ö±ðΪ£¨3·Ö£©£¬Ìá³öÒâÒå²»´óµÄÎÊÌâ²»µÃ·Ö£¬½â¾öÎÊÌâµÄ·ÖÖµ²»µÃ³¬¹ýÌá³öÎÊÌâµÄ·ÖÖµ£®
Ìá³öµÄÎÊÌâÀýÈ磺ֱÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬µ±PÒìÓÚA£¬BÁ½µãʱ£¬Èç¹ûÖ±ÏßPA£¬PBµÄбÂʶ¼´æÔÚ£¬ÔòËüÃÇбÂʵĻýΪÓëµãPÎ޹صĶ¨Öµ£®£¨15·Ö£©
½â·¨1£ºÉèÖ±Ïß·½³ÌΪy=kx£¬A£¬BÁ½µã×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨-x1£¬-y1£©£¬Ôòy1=kx1
°Ñy=kx´úÈëmx2+ny2=1µÃ£¨m+nk2£©x2=1£¬
KPA•KPB=
(y0-y1)(y0+y1) |
(x0-x1)(x0+x1) |
y02-y12 |
x02-x12 |
ËùÒÔKPA•KPB=
| ||||
x02-
|
m-m(m+nk2)x02 |
n(m+nk2)x02-n |
m |
n |
Ìá³öµÄÎÊÌâµÄÀýÈ磺ֱÏßL£ºy=x£¬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£®ÊÔÎÊʹ¡ÏAPB=30¡ãµÄµãPÊÇ·ñ´æÔÚ£¿£¨13·Ö£©
ÎÊÌâÀýÈ磺1£©Ö±ÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóPA+PBµÄÖµ£®
2£©Ö±Ïßl¹ýԵ㣬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóS¡÷PABµÄ×îÖµ£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÇúÏßµÄÏཻ¹ØϵµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÄܹ»ÓÉÍÖÔ²µÄÐÔÖʹéÄÉÍÆÀí µ½Ò»°ãµÄÇúÏß·½³Ì£¬¼°½ÏÇ¿µÄÂß¼ÍÆÀíµÄÔËËãÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿