题目内容
(2007•杨浦区二模)已知正四棱锥的底面面积为4cm2,体积为4cm3,设它的侧面上的斜高与底面所成角的大小为θ,则sinθ的值是
.
..
3
| ||
10 |
3
| ||
10 |
分析:设E为CD中点,由正棱锥性质,斜高PE⊥CD,,OE⊥CD,∠PEO为斜高与底面所成角,∠PEO=θ.在直角三角形POE中求出即可.
解答:解:如图,底面面积为4cm2,底面边长CD=2,.体积为4cm3,高PO=3,
E为CD中点,由正棱锥性质,斜高PE⊥CD,,OE⊥CD,∠PEO为斜高与底面所成角,∠PEO=θ.
在直角三角形POE中,sinθ=
=
=
.
故答案为:
.
E为CD中点,由正棱锥性质,斜高PE⊥CD,,OE⊥CD,∠PEO为斜高与底面所成角,∠PEO=θ.
在直角三角形POE中,sinθ=
PO |
PE |
3 | ||
|
3
| ||
10 |
故答案为:
3
| ||
10 |
点评:本题考查线面角的计算,要将空间角转化成平面角来解决.考查空间想象,转化、计算能力.
练习册系列答案
相关题目