题目内容
.(本小题满分12分)如图所示,矩形ABCD的边AB=
,BC=2,PA⊥平面ABCD,PA=2,现有数据: ①
;②
;③
;建立适当的空间直角坐标系,
(I)当BC边上存在点Q,使PQ⊥QD时,
可能取所给数据中的哪些值?请说明理由;
(II)在满足(I)的条件下,若
取所给数据的最小值
时,这样的点Q有几个? 若沿BC方向依次记为
,试求二面角
的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012228732147.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222748336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222748444.png)
(I)当BC边上存在点Q,使PQ⊥QD时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717283.png)
(II)在满足(I)的条件下,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222810156.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222826519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222841631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012228732147.png)
解:(I)建立如图所示的空间直角坐标系,则各点坐标分别为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222888535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222904568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222935630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222951597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222966565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012229663701.jpg)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222997626.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012230131178.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012230131460.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012230911072.png)
∴在所给数据中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223153164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222748336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012232004042.jpg)
(I
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223216156.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201222717569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223278441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223294491.png)
根据题意,其坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223309843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223434168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223450879.png)
∵PA⊥平面ABCD,∴PA⊥AQ1,PA⊥AQ2,
∴∠Q1AQ2就是二面角Q1-PA-Q2的平面角.……………………10分
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232012234811373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201223497868.png)
得∠Q1AQ2=30°,∴二面角Q1-PA-Q2的大小为30°.………………………12分
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目