题目内容
(本小题满分14分) 设函数
.
(Ⅰ)当
时,求函数
的单调区间和极大值点;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,试问:在区间
上是否存在
(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
)个正数
…
,使得
成立?请证明你的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713630750.png)
(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713646346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713677602.png)
(Ⅱ)已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713693386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713677602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713740490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713755283.png)
(Ⅲ)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713771527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713786491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713818337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713896369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713911489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713942339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157139741419.png)
(Ⅰ)单调增区间为
,单调减区间为
,极大值点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714036523.png)
(Ⅱ)
.
(Ⅲ)在区间
上不存在使得
成立的
(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
)个正数
…
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713989757.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714020827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714036523.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714052752.png)
(Ⅲ)在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157140981419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713896369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713911489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713942339.png)
(1)当
时,求出
的导函数,令
,列表研究其单调性和极值;
(2)只要求出
的最大值小于
即可,求出函数
的导数,研究单调性可得到
的最大值就是其极大值,解不等式得
的取值范围;
(3)
时,
,
,要研究
的单调性,记
,其中
.
,即
在
上为增函数.又
,所以,对任意的
,总有
,
.
。故不存在
。
解:(Ⅰ)当
时,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157147221095.png)
令
得到
,列表如下:
所以
的单调增区间为
,单调减区间为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714020827.png)
极大值点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714036523.png)
(Ⅱ)
,
,
.
令
,则
.
当
时,
;当
时,
.
故
为函数
的唯一极大值点,
所以
的最大值为
=
.
由题意有
,解得
.
所以
的取值范围为
.
(Ⅲ)当
时,
. 记
,其中
.
∵当
时,
,∴
在
上为增函数,
即
在
上为增函数.又
,
所以,对任意的
,总有
.
所以
,
又因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
,所以
.
故在区间
上不存在使得
成立的
(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
)个正数
…
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713646346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714239694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714270618.png)
(2)只要求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713677602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714317363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713677602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713677602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713755283.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713818337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714410687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714442751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714442751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714473670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714488516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714504855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714535651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157145821042.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714488516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714613824.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157146442281.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
解:(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713646346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714239694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157147221095.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714270618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714754546.png)
![]() ![]() | ![]() | ![]() | ![]() |
![]() | + | 0 | - |
![]() | ![]() | 极大值![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713786491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713989757.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714020827.png)
极大值点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714036523.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157150501388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715066390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715112387.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715144623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715159594.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715175790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715190638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715222867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715237639.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715159594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713786491.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713786491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715331873.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715346921.png)
由题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157153781043.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715393493.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713755283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714052752.png)
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713818337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714442751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714473670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714488516.png)
∵当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714488516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714504855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715565589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714535651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157145821042.png)
所以,对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714488516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215714613824.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157156741971.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713896369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215715736687.png)
故在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713833380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157157681467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713864312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713896369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713911489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215713942339.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目