题目内容

【题目】多面体中,△为等边三角形,△为等腰直角三角形,平面平面.

1)求证:

2)若,求平面与平面所成的较小的二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)利用线面平行的性质定理,分别证得,即可证;

2)分别证得两两垂直,建立空间直角坐标系即可求解.

解:(1)证明:因为平面

平面,平面平面

所以

同理可证,

所以.

2)因为△为等腰直角三角形,,所以

,所以四边形为平行四边形,

所以

因为△为等边三角形,所以

的中点,连结

因为,则

,且

所以四边形为平行四边形,

所以

中,

所以,即,进而

同理可证,进而

以点为原点,分别以所在直线为轴,建立空间直角坐标系,

设平面的一个法向量为

,令,则

所以

易知平面的一个法向量为

所以平面与平面所成的较小的二面角的余弦值为.

练习册系列答案
相关题目

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于类解答的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用双评+仲裁的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的类解答所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于类解答,求甲同学此题得分的分布列及数学期望

2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为类解答,记该同学6个题中得分为的题目个数为,计算事件的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网