题目内容

设P1(x1,y1)、P2(x2,y2)是函数f(x)=
2x
2x+
2
图象上的两点,且
OP
=
1
2
(
OP1
+
OP2
)
,点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+1+
2
)
对一切n∈N*都成立,试求a的取值范围.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n
分析:(1)由
OP
=
1
2
(
OP1
+
OP2
)
得到P是P1P2的中点?x1+x2=1?y1+y2=1得到yp即可;
(2)由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,而Sn=f(
1
n
) +f(
2
n
) +…+f(
n-1
n
) +f(
n
n
)
能写成Sn=f(
n
n
) +f(
n-1
n
)+…+f(
2
n
)  +f(
1
n
)
,两者相加可得Sn
(3)先表示Tn的同项公式,求出之和,根据Tn<a(Sn+1+
2
)
利用基本不等式求出a的取值范围即可.
解答:解:(1)∵
OP
=
1
2
(
OP1
+
OP2
)

∴P是P1P2的中点?x1+x2=1y1+y2=f(x1)+f(x2)=
2x1
2x1+
2
+
2x2
2x2+
2
=
2x1
2x1+
2
+
21-x1
21-x1+
2
=
2X1
2X1+
2
+
2
2X1+
2
=1
yp=
1
2
(y1+y2)=
1
2

(2)由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,f(1)=2-
2
Sn=f(
1
n
) +f(
2
n
) +…+f(
n-1
n
) +f(
n
n
)
Sn=f(
n
n
) +f(
n-1
n
)+…+f(
2
n
)  +f(
1
n
)

相加得2Sn=f(n)+[f(
1
n
)+f(
n-1
n
)] +[f(
2
n
)+f(
n-2
n
)]+…+[f(
n-1
n
)+f(
1
n
)] +f(1)
=2f(1)+1+1+…+1=n+3-2
2
(n-1个1)
Sn=
n+3-2
2
2

(3)
1
(Sn+
2
)(Sn+1+
2
)
=
1
n+3
2
n+4
2
=
4
(n+3)(n+4)
=4(
1
n+3
-
1
n+4
)

Tn=4[(
1
4
-
1
5
)+(
1
5
-
1
6
)+…+(
1
n+3
-
1
n+4
)] =
n
n+4

Tn<a(Sn+1+
2
)?a>
Tn
Sn+1+
2
=
2n
(n+4)2
=
2
n+
16
n
+8

n+
16
n
≥8
,当且仅当n=4时,取“=”
2
n+
16
n
+8
2
8+8
=
1
8
,因此,a>
1
8
点评:考查学生运用数列及数列求和的能力,理解掌握指数函数性质的能力,以及会用基本不等式证明的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网