题目内容
(2012•绍兴一模)设{an}是首项为1的正项数列,且(n+1)
-n
+an+1•an=0(n∈N*).
(1)求它的通项公式;
(2)求数列{
}的前n和Sn.
a | 2 n+1 |
a | 2 n |
(1)求它的通项公式;
(2)求数列{
an |
n+1 |
分析:(1)解法一、由(n+1)
-n
+an+1•an=0,两边同除以an2,得(n+1)(
)2+
-n=0,从而
=
,再利用累积法求得通项公式
解法二、由(n+1)
-n
+an+1•an=0分解因式得出[(n+1)
-n
]•(an+1+an)=0,(n+1)an+1=nan,再同法一求解.
(2)由(1)知,
=
=
-
,利用裂项求和法解决.
a | 2 n+1 |
a | 2 n |
an+1 |
an |
an+1 |
an |
an+1 |
an |
n |
n+1 |
解法二、由(n+1)
a | 2 n+1 |
a | 2 n |
a | n+1 |
a | n |
(2)由(1)知,
an |
n+1 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
解答:解:(1)解法一、由(n+1)
-n
+an+1•an=0得,(n+1)(
)2+
-n=0…(2分)
∵an>0,∴
=
…(2分)
则 a n=
•
…
•a1=(
)•(
)…(
)a1=
…(4分)
解法二、由(n+1)
-n
+an+1•an=0得,[(n+1)
-n
]•(an+1+an)=0…(2分)
∵an>0,∴(n+1)an+1=nan…(2分)
则 nan=(n-1)an-1=…=1•a1=1
∴an=
…(4分)
(2)由(1)知,
=
=
-
…(3分)
∴Sn=
+
+…+
=(1-
)+(
-
)+…+(
-
)=
…(3分)
a | 2 n+1 |
a | 2 n |
an+1 |
an |
an+1 |
an |
∵an>0,∴
an+1 |
an |
n |
n+1 |
则 a n=
an |
an-1 |
an-1 |
an-2 |
a2 |
a1 |
n-1 |
n |
n-2 |
n-1 |
1 |
2 |
1 |
n |
解法二、由(n+1)
a | 2 n+1 |
a | 2 n |
a | n+1 |
a | n |
∵an>0,∴(n+1)an+1=nan…(2分)
则 nan=(n-1)an-1=…=1•a1=1
∴an=
1 |
n |
(2)由(1)知,
an |
n+1 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Sn=
a1 |
2 |
a2 |
3 |
an |
n+1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
n |
n+1 |
点评:本题主要考查了数列的递推公式和通项公式.考查了学生转化计算的能力,考查了累积法求通项、裂项求和法
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目