题目内容

如图,斜四棱柱的底面是矩形,平面⊥平面分别为的中点.

求证:
(1);(2)∥平面.

(1)详见解析;(2)详见解析.

解析试题分析:(1)要证明线与线的,可以转化为证明线与面的平面,而由题目所给的平面⊥平面利用面面垂直的性质定理可以得到.
(2)要证明∥平面,可以转化为线线平行,即通过添加辅助平面,在平面找一条直线与EF平行即可.
试题解析:证明:(1)由底面为矩形得到,                       2分
又∵平面⊥平面,平面平面平面=
平面.                                            4分
又∵,∴.                               6分
(2)设中点为,连结
分别为的中点,∴.            8分
在矩形中,由的中点,得到,     10分

∴四边形是平行四边形,∴.   12分
平面 ,
∥平面.                  14分
考点:(1)线线垂直的判定;(2)线面平行的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网