题目内容
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.
(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.
(1)AD⊥PE;(2).
解析试题分析:(1)证明线线垂直要通过线面垂直证明,题中所给侧面PAD⊥底面ABCD是面面垂直,通过取AD的中点O,连结OP,OE,∵PA=PD,∴OP⊥AD,而OE⊥AD.,则AD⊥平面OPE.,从而能够证出AD⊥PE..(2)求二面角E-AD-G的正切值可以通过两种方法:①常规方法,作出二面角的平面角,并求出,取OE的中点F,连结FG,OG,则由(1)易知AD⊥OG,又OE⊥AD,∴∠GOE就是二面角E-AD-G的平面角,再利用三角形中边长关系求出∠GOE的正切值;②空间向量法,建立如图所示的空间直角坐标系,写出已知点的坐标,设平面ADG的法向量为,根据,求出
,而平面EAD的一个法向量为,再根据求出.
试题解析:(1)如图,取AD的中点O,连结OP,OE,∵PA=PD,∴OP⊥AD,
又E是BC的中点,∴OE∥AB,∴OE⊥AD.
又OP∩OE=0,∴AD⊥平面OPE.
∵PE?平面OPE,∴AD⊥PE.
(2)解法一:取OE的中点F,连结FG,OG,则由(1)易知AD⊥OG,
又OE⊥AD,∴∠GOE就是二面角E-AD-G的平面角,
∵PA=PD,∠APD=60°,
∴△APD为等边三角形,且边长为2,
∴OP=×2=,FG=OP=,OF=CD=1,
∴OG=,∴cos∠GOE=
解法二:建立如图所示的空间直角坐标系,则A(1,0,0),D(-1,0,0),P(0,0,),E(0,2,0),
∴
设平面ADG的法向量为,
由得,
∴.
又平面EAD的一个法向量为,
又因为.
考点:1.线线垂直的证明;2.二面角的求解.