题目内容

(2013•湖南模拟)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
x -1 0 2 4 5
y 1 2 0 2 1
(1)f(x)的极小值为
0
0

(2)若函数y=f(x)-a有4个零点,则实数a的取值范围为
[1,2)
[1,2)
分析:(1)由导数图象可知导函数的符号,从而可判断函数的单调性,得函数的极值;
(2)函数y=f(x)-a有4个零点,即函数y=f(x)与y=a的图象有4个交点,求出函数f(x)在定义域内的极大值、极小值及端点处的函数值,结合图象即可求得a的取值范围;
解答:解:(1)由导数图象可知,当-1<x<0或2<x<4时,f'(x)>0,函数单调递增,
当0<x<2或4<x<5,f'(x)<0,函数单调递减,
所以当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,
当x=2时,函数取得极小值f(2)=0,
所以f(x)的极小值为0;
(2)函数y=f(x)-a有4个零点,即函数y=f(x)与y=a的图象有4个交点,
由(1)知,函数取得极大值f(0)=2,f(4)=2,取得极小值f(2)=0,
又f(-1)=1,f(5)=1,
所以1≤a<2,
故答案为:(1)0;(2)[1,2).
点评:本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网