题目内容

(2013•湖南模拟)设椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,离心率为
1
2
,在x轴负半轴上有一点B,且
BF2
=2
BF1

(1)若过A、B、F2三点的圆恰好与直线x-
3
y-3=0
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.
分析:(1)根据
c
a
=
1
2
,得c=
1
2
a
,所以|F1F2|=a,利用
BF2
=2
BF1
,可得F1为BF2的中点,从而可得△ABF2的外接圆圆心为F1(-
a
2
,0)
,半径r=|F1A|=a,根据过A、B、F2三点的圆与直线x-
3
y-3=0
相切,利用点到直线的距离公式,即可确定椭圆方程;
(2)由(1)知F2(1,0),设l的方程为:y=k(x-1)与椭圆方程联立,利用韦达定理,结合菱形对角线垂直,所以(
PM
+
PN
)•
MN
=0
,可得m,k之间的关系,从而可得结论.
解答:解:(1)由题意
c
a
=
1
2
,得c=
1
2
a
,所以|F1F2|=a
∵|AF1|=|AF2|=a,
BF2
=2
BF1
,∴F1为BF2的中点,
∴|AF1|=|AF2|=|F1F2|=a
∴△ABF2的外接圆圆心为F1(-
a
2
,0)
,半径r=|F1A|=a…(3分)
又过A、B、F2三点的圆与直线x-
3
y-3=0
相切,所以
|-
1
2
a-3|
2
=a

∴a=2,∴c=1,b2=a2-c2=3.
∴所求椭圆方程为
x2
4
+
y2
3
=1
…(6分)
(2)由(1)知F2(1,0),设l的方程为:y=k(x-1)
将直线方程与椭圆方程联立
y=k(x-1)
x2
4
+
y2
3
=1
,整理得(3+4k2)x2-8k2x+4k2-12=0
设M(x1,y1),N(x2,y2),则x1+x2=
8k2
3+4k2
 ,  y1+y2=k(x1+x2-2)
…(8分)
假设存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,
由于菱形对角线垂直,所以(
PM
+
PN
)•
MN
=0

PM
+
PN
=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m, y1+y2)

又MN的方向向量是(1,k),故k(y1+y2)+x1+x2-2m=0,则k2(x1+x2-2)+x1+x2-2m=0,
k2(
8k2
3+4k2
-2)+
8k2
3+4k2
-2m=0

由已知条件知k≠0且k∈R,
m=
k2
3+4k2
=
1
3
k2
+4
…(11分)
0<m<
1
4

故存在满足题意的点P且m的取值范围是(0,
1
4
)
…(13分)
点评:本题考查椭圆的标准方程,考查直线与圆,直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆方程,正确运用韦达定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网