题目内容
椭圆
的离心率为
,且过点
直线
与椭圆M交于A、C两点,直线
与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401010171239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101033413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101033657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101048732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101064757.png)
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
(1)
;(2)详见解析;(3)最小值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101111411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101095654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101111411.png)
试题分析:(1)依题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401011581229.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101204592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101220422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101251306.png)
利用(1)所得椭圆方程,联立方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401012671149.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101282310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401012981173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101314406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101329995.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101345374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401013601004.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401013761574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101392548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101407451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101314406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101345374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101470291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101485730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401015011022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101516337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101532413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101516337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101548405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101563492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101516337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101485730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101516337.png)
试题解析:(1)依题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401011581229.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101204592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101641771.png)
故椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101251306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101095654.png)
(2)依题意,点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101688432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401012671149.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101719455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401012981173.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401017501745.png)
所以线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101314406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101329995.png)
同理,所以线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101345374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401013601004.png)
因为四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101813524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401013761574.png)
解得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101392548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101407451.png)
即平行四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101813524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101314406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101345374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101470291.png)
(3)点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101688432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401015011022.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101719455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101969791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101984878.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401020001280.png)
同理,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401020161257.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102031564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401020471556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102062453.png)
从而菱形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101813524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102094299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101485730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102125951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401021401190.png)
整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240401021561201.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102062453.png)
故,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102218395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040102234221.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101813524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040101111411.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目