题目内容
【题目】在直角坐标系中,已知一动圆经过点
且在
轴上截得的弦长为4,设动圆圆心的轨迹为曲线
.
(1)求曲线的方程;
(2)过点作互相垂直的两条直线
,
,
与曲线
交于
,
两点
与曲线
交于
,
两点,线段
,
的中点分别为
,
,求证:直线
过定点
,并求出定点
的坐标.
【答案】(1);(2)证明见解析;
.
【解析】
试题分析:(1)设圆心坐标,利用圆心的半径相等可建立等式,求得曲线的方程;(2)易知两直线的斜率都存在,设直线斜率可得直线方程,与抛物线方程联立可得点坐标,同理可得
的坐标,得直线
的方程,得其过定点,且得出定点坐标.
试题解析:(1)设圆心,依题意有
,即得
,
∴曲线的方程为
.
(2)易知直线,
的斜率存在且不为0,设直线
的斜率为
,
,
,
则直线:
,
,
由得
,
,
∴,
,
∴.
同理得.
当或
时,直线
的方程为
;
当且
时,直线
的斜率为
,
∴直线的方程为
,即
,
∴直线过定点
,其坐标为
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】为了解重庆市高中学生在面对新高考模式“3+1+2”的科目选择中,物理与历史的二选一是否与性别有关,某高中随机对该校50名高一学生进行了问卷调查得到相关数据如下列联表:
选物理 | 选历史 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 |
己知在这50人中随机抽取1人,抽到选物理的人的概率为。
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为物理与历史的二选一与性别有关?
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式,其中
为样本容量)
(2)己知在选物理的10位女生中有3人选择了化学、地理,有5人选择了化学、生物,有2人选择了生物、地理,现从这10人中抽取3人进行更详细的学科意愿调查,记抽到的3人中选择化学的有X人,求随机变量X的分布列及数学期望。