题目内容
12.已知数列{an}的前n项和是Sn,a1=1,3Sn2+an+1(3Sn+1)=0.(1)求数列{an}的通项公式;
(2)若Sn=(3n+1)bn,求数列{bn}的前n项和Tn.
分析 (1)由a1=1,3Sn2+an+1(3Sn+1)=0,an+1=Sn+1-Sn.代入变形化为$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=3,利用等差数列的通项公式可得:Sn.利用an=Sn-Sn-1即可得出.
(2)由Sn=(3n+1)bn,可得bn=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和”即可得出.
解答 解:(1)∵a1=1,3Sn2+an+1(3Sn+1)=0,an+1=Sn+1-Sn.
∴3Sn2+(Sn+1-Sn)(3Sn+1)=0,
化为$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=3,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为1,公差为3.
∴$\frac{1}{{S}_{n}}$=1+3(n-1)=3n-2,
∴Sn=$\frac{1}{3n-2}$,
∴an=Sn-Sn-1=$\frac{1}{3n-2}-\frac{1}{3n-5}$.
(2)∵Sn=(3n+1)bn,
∴bn=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{3}[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了变形能力、推理能力与计算能力,属于中档题.