题目内容
【题目】Sn为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求b1 , b11 , b101;
(Ⅱ)求数列{bn}的前1000项和.
【答案】解:(Ⅰ)Sn为等差数列{an}的前n项和,且a1=1,S7=28,7a4=28. 可得a4=4,则公差d=1.
an=n,
bn=[lgn],则b1=[lg1]=0,
b11=[lg11]=1,
b101=[lg101]=2.
(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.
b100=b101=b102=b103=…=b999=2,b10 , 00=3.
数列{bn}的前1000项和为:9×0+90×1+900×2+3=1893
【解析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1 , b11 , b101;(Ⅱ)找出数列的规律,然后求数列{bn}的前1000项和.
【考点精析】本题主要考查了数列的前n项和和等差数列的性质的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.
练习册系列答案
相关题目