题目内容

【题目】已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足 = (0<λ<1)时,平面DEF⊥平面PCE,则λ的值为(
A.
B.
C.
D.

【答案】C
【解析】解:由题意,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系, 则D(0,4,0),E(4,0,2),C(4,4,0),P(0,0,4),A(0,0,0),B(4,0,0),
设F(t,0,0),0≤t≤4, = (0<λ<1),
则(t,0,0)=(4λ,0,0),∴t=4λ,∴F(4λ,0,0),
=(4,﹣4,2), =(4λ,﹣4,0), =(4,4,﹣4), =(4,0,﹣2),
设平面DEF的法向量 =(x,y,z),
,取x=1,得 =(1,λ,2λ﹣2),
设平面PCE的法向量 =(a,b,c),
,取a=1,得 =(1,1,2),
∵平面DEF⊥平面PCE,
=1+λ+2(2λ﹣2)=0,解得
故选:C.

【考点精析】关于本题考查的平面与平面垂直的性质,需要了解两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网