题目内容
如图,三棱柱ABC
A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408540412632.jpg)
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABC
A1B1C1的体积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854026356.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408540412632.jpg)
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854057341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854026356.jpg)
(1)见解析 (2)3
(1)证明:取AB的中点O,连接OC,OA1,A1B.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408540882886.jpg)
因为CA=CB,所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,
所以AB⊥平面OA1C.
又A1C?平面OA1C,故AB⊥A1C.
(2)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854104344.png)
又A1C=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854057341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854135388.png)
因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854026356.jpg)
又△ABC的面积S△ABC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854104344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040854026356.jpg)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目