题目内容

17.已知平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,点E,F分别在线段BC,DC上运动,设$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$的最小值是$\frac{22}{9}$.

分析 由题意画出图形,把$\overrightarrow{AE},\overrightarrow{AF}$都用含有$\overrightarrow{AB},\overrightarrow{AD}$的式子表示,展开后化为关于λ的函数,再利用基本不等式求最值.

解答 解:如图,
$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}+λ\overrightarrow{BC}=\overrightarrow{AB}+λ\overrightarrow{AD}$,
$\overrightarrow{AF}=\overrightarrow{AD}+\overrightarrow{DF}=\overrightarrow{AD}+\frac{1}{9λ}\overrightarrow{DC}=\overrightarrow{AD}+$$\frac{1}{9λ}\overrightarrow{AB}$.
∵AB=2,AD=1,∠DAB=60°,
∴$\overrightarrow{AE}•\overrightarrow{AF}$=$(\overrightarrow{AB}+λ\overrightarrow{AD})•(\overrightarrow{AD}+\frac{1}{9λ}\overrightarrow{AB})$
=$\frac{10}{9}\overrightarrow{AB}•\overrightarrow{AD}+\frac{1}{9λ}$$|\overrightarrow{AB}{|}^{2}+λ|\overrightarrow{AD}{|}^{2}$
=$\frac{4}{9λ}+λ+\frac{10}{9}×2×1×cos60°$
=$\frac{4}{9λ}+λ+\frac{10}{9}$$≥\frac{10}{9}+2\sqrt{\frac{4}{9λ}•λ}=\frac{22}{9}$.
当且仅当$\frac{4}{9λ}=λ$,即$λ=\frac{2}{3}$时,上式等号成立.
故答案为:$\frac{22}{9}$.

点评 本题考查平面向量的数量积运算,考查了向量加法的三角形法则,体现了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网