题目内容
【题目】已知圆: (),设为圆与轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.
【答案】(1)().(2)见解析
【解析】试题分析:(1)由题意得 ,设中点为 则
得到关于 的方程就是点 的轨迹的方程.(2)设直线的方程为求出直线的方程并联立得到点坐标,由两点距离公式求出,再由点到直线的距离公式求出距离则线段长为半径的圆与直线相切.
试题解析:(Ⅰ)设,由题意可知, , 的中点, ,
因为, , .
在⊙C中,因为,∴,
所以,即(),
所以点的轨迹的方程为: ().
(Ⅱ) 设直线MN的方程为, , ,直线BN的方程为,
,可得,
,则点A,所以直线AM的方程为,
, ,可得,
直线BN的方程为,
联立可得,
所以点, , ,
∴与直线MN相切.
练习册系列答案
相关题目
【题目】某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意 | 不同意 | 合计 | |
女学生 | 4 | ||
男学生 | 2 |
(Ⅰ)完成上述统计表;
(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;
(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.