题目内容
已知奇函数
在
上有意义,且在
上是增函数,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254763482.png)
(1)求满足不等式
的实数
的取值范围;
(2)设函数
,若集合
,集合
,求![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254872572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254700447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254716717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254732533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254763482.png)
(1)求满足不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254778529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254794266.png)
(2)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232132548101040.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254825989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232132548561081.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254872572.png)
(1) x < -1或0 < x < 1 (2) {m | m > 4-2
}
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
(1) f (-1) = -f (1) = 0,又f (x) 在 (0,+¥) 上是增函数,
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1.
(2) N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}……………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0
然后换元构造函数设t = cosq,h(t) = cos 2q-m cos q + 2m-2
= t 2-mt + 2m-2 ,
求其最值即可
(1)依题意,f (-1) = -f (1) = 0,又f (x) 在 (0,+¥) 上是增函数,
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1…………… 2分
(2)N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}……………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0…………………4分
设t = cosq,h(t) = cos 2q-m cos q + 2m-2 = t 2-mt + 2m-2
= (t-
) 2-
+ 2m-2,
∵ cosq∈[-1,1] Þt∈[-1,1],h(t) 的对称轴为 t =
…5分
1°当
> 1,即 m > 2 时,h(t) 在 [-1,1] 为减函数
∴ h(t)min =" h(1)" = m-1 > 0 Þm > 1 Þm > 2…………………7分
2°当 -1≤
≤1,即 -2≤m≤2 时,
∴ h(t)min = h(
) = -
+ 2m-2 > 0 Þ4-2
< m < 4 + 2
Þ4-2
< m≤2…………9分
3°当
< -1,即 m < -2 时,h(t) 在 [-1,1] 为增函数
∴ h(t)min = h(-1) = 3m-1 > 0 Þ m >
无解………………11分
综上,m > 4-2
Þ M∩N =" {m" | m > 4-2
}……………12分
另解:. 解:依题意,f (-1) = -f (1) = 0,又f (x) 在 (0,+¥) 上是增函数,
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1……………… 2分
∴ N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}…………………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0
设t = cosq,h(t) = cos 2q-m cos q + 2m-2 = t 2-mt + 2m-2 = (t-
) 2-
+ 2m-2
∵ cosq∈[-1,1] Þt∈[-1,1],h(t) 的对称轴为 t =
,△= m 2-8m + 8 …4分
1°当 △< 0,即 4-2
< m < 4 + 2
时,h(t) > 0 恒成立.…………………6分
2°当 △≥0,即 m≤4-2
或 m≥4 + 2
时,………7分
由 h(t) > 0 在 [-1,1] 上恒成立
∴
Þ m≥2 Þ m≥4 + 2
………………11分
综上,m > 4-2
Þ M∩N =" {m" | m > 4-2
}
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1.
(2) N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}……………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0
然后换元构造函数设t = cosq,h(t) = cos 2q-m cos q + 2m-2
= t 2-mt + 2m-2 ,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254903462.png)
(1)依题意,f (-1) = -f (1) = 0,又f (x) 在 (0,+¥) 上是增函数,
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1…………… 2分
(2)N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}……………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0…………………4分
设t = cosq,h(t) = cos 2q-m cos q + 2m-2 = t 2-mt + 2m-2
= (t-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254966483.png)
∵ cosq∈[-1,1] Þt∈[-1,1],h(t) 的对称轴为 t =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
1°当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
∴ h(t)min =" h(1)" = m-1 > 0 Þm > 1 Þm > 2…………………7分
2°当 -1≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
∴ h(t)min = h(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254966483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
Þ4-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
3°当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
∴ h(t)min = h(-1) = 3m-1 > 0 Þ m >
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213255122317.png)
综上,m > 4-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
另解:. 解:依题意,f (-1) = -f (1) = 0,又f (x) 在 (0,+¥) 上是增函数,
∴ f (x) 在 (-¥,0) 上也是增函数,
∴ 由 f (x) < 0得x < -1或0 < x < 1……………… 2分
∴ N =" {m" | f [g(q)] < 0} =" {m" | g(q) < -1或0 < g(q) < 1},
M∩N =" {m" | g(q) < -1}…………………3分
由g(q) < -1得 sin 2q+ m cos q-2m < -1 Þ cos 2q-m cos q + 2m-2 > 0 恒成立
Þ(cos 2q-m cos q + 2m-2)min > 0
设t = cosq,h(t) = cos 2q-m cos q + 2m-2 = t 2-mt + 2m-2 = (t-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254966483.png)
∵ cosq∈[-1,1] Þt∈[-1,1],h(t) 的对称轴为 t =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254934450.png)
1°当 △< 0,即 4-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
2°当 △≥0,即 m≤4-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
由 h(t) > 0 在 [-1,1] 上恒成立
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232132552932372.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
综上,m > 4-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213254888340.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目