题目内容
5.数列{an}的通项公式an=3n,其前n项和为Sn,则数列{$\frac{1}{{S}_{n}}$}的前100项和为( )A. | $\frac{33}{50}$ | B. | $\frac{2}{3}$ | C. | $\frac{200}{303}$ | D. | $\frac{31}{50}$ |
分析 由an=3n,可得Sn=$\frac{3n(n+1)}{2}$,可得$\frac{1}{{S}_{n}}$=$\frac{2}{3}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.
解答 解:∵an=3n,∴Sn=$\frac{n(3+3n)}{2}$=$\frac{3n(n+1)}{2}$,
∴$\frac{1}{{S}_{n}}$=$\frac{2}{3}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{$\frac{1}{{S}_{n}}$}的前100项和=$\frac{2}{3}[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})]$=$\frac{2}{3}(1-\frac{1}{101})$=$\frac{200}{303}$.
故选:C.
点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.某校高三文,理各两个班在11月份进行了一次质量考试,考生成绩情况如下表所示:已知用分层抽样方法在分数[400,480)的考生中随机抽取27名考生进行质量分析,其中文科考生抽取了7名.(1)求a的值(2)如图是文科不低于550分的5名考生的语文成绩(其中语文满分为150分)的茎叶图,请计算这5名考生的语文成绩的方差;(3)在成绩不低于550分的所有考生中抽取2名进行治疗分析,求至少抽到一名理科生的概率.
[0,400] | [400,480] | [480,550] | [550,750] | |
文科考生 | 67 | 35 | 19 | 5 |
理科考生 | 53 | a | 41 | 2 |
16.在等比数列{an}中,如果a3=2,a6=6,那么a9为( )
A. | 8 | B. | 10 | C. | 12 | D. | 18 |
20.已知正方体ABCD-A1B1C1D1的棱长为1,E,F分别是边AA1,CC1的中点,点M是BB1上的动点,过点E,M,F的平面与棱DD1交于点N,设BM=x,平行四边形EMFN的面积为S,设y=S2,则y关于x的函数y=f(x)的解析式为( )
A. | $f(x)=2{x^2}-2x+\frac{3}{2}$,x∈[0,1] | |
B. | $f(x)=\left\{\begin{array}{l}\frac{3}{2}-x,x∈[0\;,\;\frac{1}{2})\\ x+\frac{1}{2},x∈[\frac{1}{2}\;,\;1].\end{array}\right.$ | |
C. | $f(x)=\left\{\begin{array}{l}-2{x^2}+\frac{3}{2},x∈[0\;,\;\frac{1}{2}]\\-2{(x-1)^2}+\frac{3}{2},x∈(\frac{1}{2}\;,\;1].\end{array}\right.$ | |
D. | $f(x)=-2{x^2}+2x+\frac{3}{2}$,x∈[0,1] |
10.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且当x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,则实数a的取值范围为( )
A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,+∞) | C. | (-∞,2] | D. | [2,+∞) |