题目内容

16.已知sinα是方程5x2-7x-6=0的根,求$\frac{sin(α+\frac{3π}{2})•sin(\frac{3π}{2}-α)•ta{n}^{2}(2π-α)•tan(π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)}$的值.

分析 求解方程的根,再由角所在的象限确定角的正弦值,进而求出它的余弦值,利用诱导公式把所求的式子进行化简,把此角的正弦值和余弦值代入进行求解.

解答 解:解得方程5x2-7x-6=0的两根为x1=-$\frac{3}{5}$,x2=2,
∴sinα=-$\frac{3}{5}$,则cosα=±$\frac{4}{5}$,
$\frac{sin(α+\frac{3π}{2})•sin(\frac{3π}{2}-α)•ta{n}^{2}(2π-α)•tan(π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)}$=$\frac{-cosα•cosα•ta{n}^{2}α•tanα}{-sinα•sinα}$=tanα=±$\frac{3}{4}$.

点评 本题的考点是诱导公式和平方关系的应用,注意利用角所在的象限和诱导公式的口诀,正确确定三角函数值的符号,对于符号问题是易错的地方,需要认真和细心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网