题目内容
(1)①计算lim |
n→∞ |
an+1+bn |
an+bn+1 |
②计算
lim |
x→-∞ |
| |||
|
(2)设函数f(x)=
|
①若f(x)在x=0处的极限存在,求a,b的值;
②若f(x)在x=0处连续,求a,b的值.
分析:(1)①当a=b≠0,|a|>|b|和|a|<|b|时,根据题设条件和计算法则分别求解
的值.
②分子分线同时除以x,把
转化为
=-1.
(2)①求出函数的左极限是
,右极限是1.由f(x)在x=0处的极限存在,知
=1,所以b=2.故a∈R,b=2.
②由f(x)在x=0处连续,知
,故a=1,b=2.
lim |
n→∞ |
an+1+bn |
an+bn+1 |
②分子分线同时除以x,把
lim |
x→-∞ |
| |||
|
lim |
x→-∞ |
| |||||
|
(2)①求出函数的左极限是
b |
2 |
b |
2 |
②由f(x)在x=0处连续,知
|
解答:解:(1)①当a=b≠0时,
=1;
当|a|>|b|时,
=
=a;
当|a|<|b|时,
=
=
.
∴
=
.
②
=
=-1.
(2)解:①
f(x)=
(
-1)
=
=
=
.
(
-1)=
[
-1]
=
=1.
∵f(x)在x=0处的极限存在,∴
=1,∴b=2.
故a∈R,b=2.
②∵f(x)在x=0处连续,∴
,∴a=1,b=2.
lim |
n→∞ |
an+1+bn |
an+bn+1 |
当|a|>|b|时,
lim |
n→∞ |
an+1+bn |
an+bn+1 |
lim |
n→∞ |
a+(
| ||
1+b(
|
当|a|<|b|时,
lim |
n→∞ |
an+1+bn |
an+bn+1 |
lim |
n→∞ |
a(
| ||
(
|
1 |
b |
∴
lim |
n→∞ |
an+1+bn |
an+bn+1 |
|
②
lim |
x→-∞ |
| |||
|
lim |
x→-∞ |
| |||||
|
(2)解:①
lim |
x→0- |
lim |
x→0- |
b |
x |
1+x |
=
lim |
x→0- |
b(
| ||||
x(
|
=
lim |
x→0- |
b | ||
|
=
b |
2 |
lim |
x→0+ |
x2 | ||
|
lim |
x→0+ |
x2(
| ||||
(
|
=
lim |
0→0+ |
1+x2 |
∵f(x)在x=0处的极限存在,∴
b |
2 |
故a∈R,b=2.
②∵f(x)在x=0处连续,∴
|
点评:本题考查极限、迦续的概念和性质,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.

练习册系列答案
相关题目