题目内容

(1)①计算
lim
n→∞
an+1+bn
an+bn+1
(a2+b2≠0且a≠-b);
②计算
lim
x→-∞
x2-3
3x3+1

(2)设函数f(x)=
x2
1+x2
-1
-1(x>0)
a(x=0)
b
x
(
1+x
-1)(x<0)

①若f(x)在x=0处的极限存在,求a,b的值;
②若f(x)在x=0处连续,求a,b的值.
分析:(1)①当a=b≠0,|a|>|b|和|a|<|b|时,根据题设条件和计算法则分别求解
lim
n→∞
an+1+bn
an+bn+1
的值.
②分子分线同时除以x,把
lim
x→-∞
x2-3
3x3+1
转化为
lim
x→-∞
1-
3
x2
3-1+
1
x3
=-1

(2)①求出函数的左极限是
b
2
,右极限是1.由f(x)在x=0处的极限存在,知
b
2
=1
,所以b=2.故a∈R,b=2.
②由f(x)在x=0处连续,知
b
2
=1
a=1
,故a=1,b=2.
解答:解:(1)①当a=b≠0时,
lim
n→∞
an+1+bn
an+bn+1
=1;
当|a|>|b|时,
lim
n→∞
an+1+bn
an+bn+1
=
lim
n→∞
 
a+(
b
a
)
n
1+b(
b
a
)
n
=a;
当|a|<|b|时,
lim
n→∞
an+1+bn
an+bn+1
=
lim
n→∞
a(
a
b
)
n
+1
(
a
b
)
n
+b
=
1
b

lim
n→∞
an+1+bn
an+bn+1
=
1,a=b≠0
a|a|>|b
1
b
|a|<|b

lim
x→-∞
x2-3
3x3+1
=
lim
x→-∞
1-
3
x2
3-1+
1
x3
=-1


(2)解:①
lim
x→0-
f(x)=
lim
x→0-
b
x
(
1+x
-1)

=
lim
x→0-
b(
1+x
-1)(
1+x
+1)
x(
1+x
+1)

=
lim
x→0-
b
1+x
+1

=
b
2

lim
x→0+
(
x2
1+x2
-1
-1)
=
lim
x→0+
[
x2(
1+x2
+1)
(
1+x2
-1)(
1+x2
+1)
-1]

=
lim
0→0+
1+x2
=1.
∵f(x)在x=0处的极限存在,∴
b
2
=1
,∴b=2.
故a∈R,b=2.
②∵f(x)在x=0处连续,∴
b
2
=1
a=1
,∴a=1,b=2.
点评:本题考查极限、迦续的概念和性质,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网