题目内容
(1)计算lim |
n→∞ |
1 |
22 |
1 |
32 |
1 |
42 |
1 |
4n2 |
(2)若
lim |
n→∞ |
an2-2n+1 |
bn+2 |
a |
b |
分析:(1)(1-
)(1-
)(1-
)…(1-
)=
•
=
,由此能求出其结果.
(2)2n+
=
,且
(2n+
)=1,由此能求出
=-2.
1 |
22 |
1 |
32 |
1 |
42 |
1 |
4n2 |
1 |
2 |
2n+1 |
2n |
2n+1 |
4n |
(2)2n+
an2-2n+1 |
bn+2 |
(2b+a)n2+2n+1 |
bn+2 |
lim |
n→∞ |
an2-2n+1 |
bn+2 |
a |
b |
解答:解:(1)(1-
)(1-
)(1-
)…(1-
)=
•
=
,
所以
(1-
)(1-
)(1-
)…(1-
)=
=
.
(2)2n+
=
,
且
(2n+
)=1,
所以
,
即
=-2.
1 |
22 |
1 |
32 |
1 |
42 |
1 |
4n2 |
1 |
2 |
2n+1 |
2n |
2n+1 |
4n |
所以
lim |
n→∞ |
1 |
22 |
1 |
32 |
1 |
42 |
1 |
4n2 |
lim |
n→∞ |
2n+1 |
4n |
1 |
2 |
(2)2n+
an2-2n+1 |
bn+2 |
(2b+a)n2+2n+1 |
bn+2 |
且
lim |
n→∞ |
an2-2n+1 |
bn+2 |
所以
|
即
a |
b |
点评:本题考查极限的性质和运算,解题时要认真审题,仔细思考,注意合理地进行等价转化.
练习册系列答案
相关题目