题目内容
【题目】已知函数, .
(1)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;
(2)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;
(3)求证:(参考数据:ln1.1≈0.0953).
【答案】(1);(2)见解析;(3)见解析
【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得导数,讨论a>1和a≤1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)﹣g(x)的导数和二阶导数,判断F'(x)的单调性,讨论a≤﹣1,a>﹣1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex>1+ln(x+1)对x>0恒成立,令;由(2)知,当a=﹣1时,对x<0恒成立,令,结合条件,即可得证.
(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),
则,
①若a≤1,则,H'(x)≥0,H(x)在[0,+∞)递增,
H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,满足,所以a≤1;
②若a>1,H′(x)=ex﹣在[0,+∞)递增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,
且x→+∞时,H'(x)→+∞,则x0∈(0,+∞),
使H'(x0)=0进而H(x)在[0,x0)递减,在(x0,+∞)递增,
所以当x∈(0,x0)时H(x)<H(0)=0,
即当x∈(0,x0)时,f(x)>h(x),不满足题意,舍去;
综合①,②知a的取值范围为(﹣∞,1].
(Ⅱ)解:依题意得,则F'(x)=ex﹣x2+a,
则F'(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)递增,
所以F'(x)<F'(0)=1+a,且x→﹣∞时,F'(x)→﹣∞;
①若1+a≤0,即a≤﹣1,则F'(x)<F'(0)=1+a≤0,
故F(x)在(﹣∞,0)递减,所以F(x)>F(0)=0,F(x)在(﹣∞,0)无零点;
②若1+a>0,即a>﹣1,则使,
进而F(x)在递减,在递增,,
且x→﹣∞时,,
F(x)在上有一个零点,在无零点,
故F(x)在(﹣∞,0)有一个零点.
综合①②,当a≤﹣1时无零点;当a>﹣1时有一个零点.
(Ⅲ)证明:由(Ⅰ)知,当a=1时,ex>1+ln(x+1)对x>0恒成立,
令,则即;
由(Ⅱ)知,当a=﹣1时,span>对x<0恒成立,
令,则,所以;
故有.
【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损元.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.以(单位:kg,)表示今年的市场需求量,(单位:元)表示今年的利润.
市场需求量(kg) | |||||
频率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)将表示为的函数;
(2)在频率分布表的市场需求量分组中,以各组的区间中间值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.