题目内容
【题目】已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.
(1)求的离心率及方程;
(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
【答案】(1),; (2)存在点,且.
【解析】
(1)由已知条件得,,即可计算出离心率和椭圆方程
(2)假设存在点,分别求出直线的斜率不存在、直线的斜率存在的表达式,令其相等,求出结果
(1)由题意可知,,则,
又的周长为8,所以,即,
则,.
故的方程为.
(2)假设存在点,使得为定值.
若直线的斜率不存在,直线的方程为,,,
则.
若直线的斜率存在,设的方程为,
设点,,联立,得,
根据韦达定理可得:,,
由于,,
则
因为为定值,所以,
解得,故存在点,且.
练习册系列答案
相关题目