题目内容
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(1)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据:,其中n=a+b+c+d.
【答案】(1)有的把握认为开车时使用手机与司机的性别有关;(2)分布列见解析,
【解析】
(1)根据题意填写2×2列联表,计算观测值,对照临界值得出结论;
(2)求出任意抽取1辆车中司机为男性且开车时使用手机的概率,知X的可能取值,且X服从二项分布,计算对应的概率,写出X的分布列,计算数学期望值.
(1)填写2×2列联表,如下;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | 40 | 15 | 55 |
女性司机人数 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
根据数表,计算=≈8.25>7.879,
所以有99.5%的把握认为开车时使用手机与司机的性别有关;
(Ⅱ)由题意,任意抽取1辆车中司机为男性且开车时使用手机的概率是,
则的可能取值为:0,1,2,3,且,
可得,
所以,
,
,
;
所以
0 | 1 | 2 | 3 | |
数学期望为.
练习册系列答案
相关题目