题目内容

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B、A1P(如图2)
精英家教网

(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示).

精英家教网
解法一:不妨设正三角形ABC的边长为3
(1)在图1中,取BE中点D,连接DF.AE:EB=CF:FA=1:2
∴AF=AD=2而∠A=60°,
∴△ADF是正三角形,又AE=DE=1,
∴EF⊥AD在图2中,A1E⊥EF,BE⊥EF,
∴∠A1EB为二面角A1-EF-B的平面角.由
题设条件知此二面角为直二面角,A1E⊥BE,又BE∩EF=E(2)
∴A1E⊥平面BEF,
即A1E⊥平面BEP


精英家教网
(3)在图2中,A1E不垂直A1B,
∴A1E是平面A1BP的垂线,又A1E⊥平面BEP,
∴A1E⊥BE.
从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则∠E1AQ就是A1E与平面A1BP所成的角,且BP⊥A1Q.
在△EBP中,BE=EP=2而∠EBP=60°,
∴△EBP是等边三角形.又A1E⊥平面BEP,
∴A1B=A1P,
∴Q为BP的中点,且EQ=
3
,又A1E=1,
在Rt△A1EQ中,tan∠EA1Q=
EQ
A1E
=
3

∴∠EA1Q=60°,
∴直线A1E与平面A1BP所成的角为60°


精英家教网
在图3中,过F作FM⊥A1P与M,连接QM,QF,
∵CP=CF=1,∠C=60°,
∴△FCP是正三角形,
∴PF=1.有PQ=
1
2
BP=1

∴PF=PQ①,
∵A1E⊥平面BEP,EQ=EF=
3

∴A1E=A1Q,
∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②,
由①②及MP为公共边知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
从而∠FMQ为二面角B-A1P-F的平面角.
在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴A1P=
5

∵MQ⊥A1P,∴MQ=
A1Q•PQ
A1P
=
2
5
5

MF=
2
5
5

在△FCQ中,FC=1,QC=2,∠C=60°,由余弦定理得QF=
3

在△FMQ中,cos∠FMQ=
MF2+MQ2-QF2
2MF•MQ
=-
7
8

∴二面角B-A1P-F的大小为π-arccos
7
8
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网