题目内容

3.定义:若对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,则称函数y=f(x)是D上的“平缓函数”.则以下说法正确的有(  )
①f(x)=-lnx+x为(0,+∞)上的“平缓函数”;
②g(x)=sinx为R上的“平缓函数”
③h(x)=x2-x是为R上的“平缓函数”;
④已知函数y=k(x)为R上的“平缓函数”,若数列{xn}对?n∈N*总有|xn+1-xn|≤$\frac{1}{{{{(2n+1)}^2}}},则|{k({x_{n+1}})-k({x_1})}|<\frac{1}{4}$.
A.0个B.1个C.2个D.3个

分析 对于①②③新定义函数类型的题目,解答时要先充分理解定义:“平缓函数”才能答题,对于(1)只需按照定义作差:|f(x1)-f(x2)|,然后寻求|f(x2)-f(x1)|≤|x2-x1|成立的条件.
对于④的解答稍微复杂一些,此处除了用到放缩外,还有添项减项的技巧应用及对数列拆项求和的充分利用.

解答 解:对于①|f(x1)-f(x2)|=|-lnx1+x1-(-lnx2+x2)|=|ln$\frac{{x}_{2}}{{x}_{1}}$+x1-x2|≤|ln$\frac{{x}_{2}}{{x}_{1}}$|+|x1-x2|,故均有|f(x1)-f(x2)|<|x1-x2|不一定成立,
故f(x)=-lnx+x不为(0,+∞)上的“平缓函数”,故①错误;
对于②设φ(x)=x-sinx,则φ'(x)=1-cosx≥0,则φ(x)=x-sinx是实数集R上的增函数,
不妨设x1<x2,则φ(x1)<φ(x2),即x1-sinx1<x2-sinx2
则sinx2-sinx1<x2-x1,①
又y=x+sinx也是R上的增函数,则x1+sinx1<x2+sinx2
即sinx2-sinx1>x1-x2,②
由  ①、②得-(x2-x1)<sinx2-sinx1<x2-x1
因此|sinx2-sinx1|<|x2-x1|,对x1<x2的实数都成立,
当x1>x2时,同理有|sinx2-sinx1|<|x2-x1|成立
又当x1=x2时,不等式|sinx2-sinx1|=|x2-x1|=0,
故对任意的实数x1,x2∈R均 有|sinx2-sinx1|≤|x2-x1|
因此 sinx是R上的“平缓函数,故②正确
对于③取x1=3,x2=1,则|h(x1)-h(x2)|=4>|x1-x2|,因此h(x)=x2-x不是R上的“平缓函数”,故③错误,
对于④函数y=k(x)为R上的“平缓函数,
则|k(x2)-k(x1)|≤|x2-x1|,所以|yn+1-yn|≤|xn+1-xn|,
因为|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
而|yn+1-y1|=|(yn+1-yn)+(yn-yn-1)+(yn-1-yn-2)+…(y2-y1)|
所以|yn+1-y1|≤|yn+1-yn|+|yn-1-yn-2|+…+|y2-y1|,
∴|yn+1-y1|≤$\frac{1}{4}$[($\frac{1}{n}$-$\frac{1}{n+1}$)+($\frac{1}{n-1}$-$\frac{1}{n}$)+…+(1-$\frac{1}{2}$)]=$\frac{1}{4}$(1-$\frac{1}{n+1}$)<$\frac{1}{4}$,故④正确.
故选:C.

点评 本题抽象函数、新定义函数类型的概念,不等式的性质,放缩法的技巧,对于新定义类型问题,在解答时要先充分理解定义才能答题,避免盲目下笔,遇到困难才来重头读题,费时费力,另外要在充分抓住定义的基础上,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,可现有结论向上追溯,看看需要哪些条件才能得出结果,再来寻求转化取得这些条件

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网