题目内容

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面积S.

【答案】
(1)解:由正弦定理,则 =

所以 =

即(cosA﹣2cosC)sinB=(2sinC﹣sinA)cosB,化简可得sin(A+B)=2sin(B+C).

因为A+B+C=π,所以sinC=2sinA.

因此 =2.


(2)解:由 =2,得c=2a,由余弦定理b2=a2+c2﹣2accosB,及cosB= ,b=2,

得4=a2+4a2﹣4a2× .解得a=1,从而c=2.

因为cosB= ,且sinB= =

因此S= acsinB= ×1×2× =


【解析】(1)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinC=2sinA,即可得解 =2.(2)由正弦定理可求c=2a,由余弦定理解得a=1,从而c=2.利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网