题目内容
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)若函数
在区间
上是减函数,求实数
的最小值;
(Ⅲ)若存在
(
是自然对数的底数)使
,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323309943.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323324442.png)
(Ⅱ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
(Ⅲ)若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323371640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323387613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323402814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
(Ⅰ)函数
的减区间是
,增区间是
;
(Ⅱ)
的最小值为
;(Ⅲ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323434491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323449632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323465561.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323496303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323512701.png)
试题分析:(Ⅰ)求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323324442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323574901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323574901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323324442.png)
(Ⅱ)求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323652928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233236831027.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323730424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323371640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323402814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323792946.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323808978.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
试题解析:解:(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323839731.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323870393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323870359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323434491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323902749.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323574901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323933595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323948476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323964358.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323980456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323870359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324182609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324198381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324214620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324229195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323434491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323449632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323465561.png)
(Ⅱ)由题意得:函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324494752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233245261055.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324572750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323340510.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233246041172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324619711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233246502265.png)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324666542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324682420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324697776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324728462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323356283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323496303.png)
(Ⅲ)命题“若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324931674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324978867.png)
“当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324994581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323792946.png)
由(Ⅱ)得,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324994581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325025859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325040882.png)
故问题等价于:“当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324994581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325072770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325087235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325103984.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325118963.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023324728462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325196629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325212441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325228495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325212441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233252591305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323512701.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325290396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325306567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325321408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325337534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325321408.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233253681092.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325384538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233253991607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325321408.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325415481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325430682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325446533.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325415481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325477590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325493550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325508592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325524684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325540637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325540662.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233255551687.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233256331273.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023325384538.png)
综上,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023323512701.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目