题目内容
已知函数
,
的图象经过
和
两点,如图所示,且函数
的值域为
.过该函数图象上的动点
作
轴的垂线,垂足为
,连接
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232322193737.png)
(I)求函数
的解析式;
(Ⅱ)记
的面积为
,求
的最大值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232094773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232094512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232109409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232125456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232156378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232156591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232172262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232187298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232203369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232322193737.png)
(I)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
(Ⅱ)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232234521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
(I)
;(II)三角形面积的最大值为16.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232297884.png)
试题分析:(I)用待定系数法.由抛物线的对称性及题设可知,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232312383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232328468.png)
将顶点坐标及点(0,0),(0,6)的坐标代入解析式得关于a,b,c方程组,解此方程组,便可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
(II)用三角形面积公式求得三角形的面积与t之间的函数关系式,然后利用导数可求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232234521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
试题解析:(I)由已知可得函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232312383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232328468.png)
方法一:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232324681497.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232484649.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232499892.png)
方法二:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232515798.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232531487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232546347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232499892.png)
(II)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232325771599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232325931112.png)
列表得:
![]() | ![]() | 4 | ![]() |
![]() | + | 0 | - |
![]() | ![]() | 极大值 | ![]() |
由上表可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232889338.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232329211340.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目