题目内容

19.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则tanβ=(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{5}{7}$D.$\frac{5}{6}$

分析 由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)-α]的值.

解答 解:∵tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则tanβ=tan[(α+β)-α]=$\frac{tan(α+β)-tanα}{1+tan(α+β)tanα}$=$\frac{\frac{1}{2}-\frac{1}{3}}{1+\frac{1}{2}×\frac{1}{3}}$=$\frac{1}{7}$,
故选:A.

点评 本题主要考查两角差的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网