题目内容
(2007•杨浦区二模)在△ABC中,a、b、c分别是三内角A、B、C所对应的三边,已知b2=a2-c2+bc,则cosA的值是
.
1 |
2 |
1 |
2 |
分析:由余弦定理cosA=
,结合已知b2=a2-c2+bc可求cosA,进而可求A
b2+c2-a2 |
2bc |
解答:解:∵b2=a2-c2+bc
∴b2+c2-a2=bc
由余弦定理可得,cosA=
=
=
故答案为
∴b2+c2-a2=bc
由余弦定理可得,cosA=
b2+c2-a2 |
2bc |
bc |
2bc |
1 |
2 |
故答案为
1 |
2 |
点评:本题主要考查了余弦定理余弦定理cosA=
的应用,属于基础试题
b2+c2-a2 |
2bc |
练习册系列答案
相关题目