题目内容

已知全集U=R,集合A={-1,2},B={x|mx+1>0},若(∁UB)∩A=∅,求实数m的取值范围.
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:利用(∁UB)∩A=∅,可得CuB=∅、-1和2都不属于CuB,从而B=U,-1和2∈B,即可求出实数m的取值范围.
解答: 解:∵(∁UB)∩A=∅,
∴CuB=∅、-1和2都不属于CuB,
∴B=U,-1和2∈B,
∴m=0或者mx+1>0的解集是x<-
1
m
且-
1
m
>2(m<0时)或者x>-
1
m
且-
1
m
<-1(m>0时)
∴m=0或者-
1
2
<m<0或者0<m<1,
∴-
1
2
<m<1.
点评:通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网