题目内容
【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
【答案】(1)详见解析;(2)存在且为.
【解析】
(Ⅰ)要证明函数不等式(),注意到,因此我们可先研究函数的性质特别是单调性,这可通过导数的性质确定;
(Ⅱ)首先把不等式具体化,即不等式为,注意到特殊情形,时,不等式为,因此的值只有为1或2,因此只要证时,不等式恒成立即可,这仍然通过导数研究函数的单调性证得结论,为了确定导数的正负的方便性,把不等式变为,因此只要研究函数的单调性,求得最小值即可.
试题解析:(Ⅰ)当时,,则 ,
令,则 ,
令,得,故在时取得最小值,
在上为增函数,
,
(Ⅱ) ,
由,得对一切恒成立,
当时,可得,所以若存在,则正整数的值只能取1,2.
下面证明当时,不等式恒成立,
设 ,则 ,
由(Ⅰ) , ,
当时, ;当时, ,
即在上是减函数,在上是增函数,
,
当时,不等式恒成立
所以的最大值是2.
练习册系列答案
相关题目
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 | b | |
乙班 | c | 30 | |
总计105 |
已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是( )
参考公式:
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A.列联表中c的值为30,b的值为35
B.列联表中c的值为15,b的值为50
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”