题目内容
【题目】如图,某小区为美化环境,建设美丽家园,计划在一块半径为R(R为常数)的扇形区域上,建个矩形的花坛CDEF和一个三角形的水池FCG.其中,O为圆心,,C,G,F在扇形圆弧上,D,E分别在半径OA,OB上,记OG与CF,DE分别交于M,N,.
(1)求△FCG的面积S关于的关系式,并写出定义域;
(2)若R=10米,花坛每平方米的造价是300元,试问矩形花坛的最高造价是多少?(取)
【答案】(1) . (2)17320元
【解析】
(1)利用圆的几何性质证得,利用表示出,由此求得三角形面积的表达式,并求得的取值范围.
(2)求得,由此求得矩形面积的表达式,利用辅助角公式,结合三角函数求最值的方法,求得矩形面积的最大值,从而求得最高造价.
(1)连接OF,因为,所以,易得,所以.
因为,所以,所以,,
所以.
(2)因为,
所以,
所以
.
因为,所以当时,最大.
故矩形花坛的最高造价是元.
练习册系列答案
相关题目
【题目】抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额(元)如下(四舍五入取整数):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
对这20个数据进行分组,各组的频数如下:
组别 | 红包金额分组 | 频数 |
2 | ||
9 | ||
3 | ||
(Ⅰ)写出的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;
(Ⅱ)记组红包金额的平均数与方差分别为组红包金额的平均数与方差分别为,试分别比较与、与的大小;(只需写出结论)
(Ⅲ)从两组的所有数据中任取2个数据,记这2个数据差的绝对值为,求的分布列和数学期望.