题目内容

【题目】已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则(
A.f(2a)<f(3)<f(log2a)
B.f(3)<f(log2a)<f(2a
C.f(log2a)<f(3)<f(2a
D.f(log2a)<f(2a)<f(3)

【答案】C
【解析】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),
∴f(x)关于直线x=2对称;
又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)f′(x)(x﹣2)>0,
∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;
同理可得,当x<2时,f(x)在(﹣∞,2)单调递减;
∵2<a<4,
∴1<log2a<2,
∴2<4﹣log2a<3,又4<2a<16,f(log2a)=f(4﹣log2a),f(x)在(2,+∞)上的单调递增;
∴f(log2a)<f(3)<f(2a).
故选C.
【考点精析】根据题目的已知条件,利用基本求导法则的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网