题目内容
【题目】定义在上的函数满足:对任意的实数,存在非零常数,都有成立.
(1)若函数,求实数和的值;
(2)当时,若, ,求函数在闭区间上的值域;
(3)设函数的值域为,证明:函数为周期函数.
【答案】(1) (2) (3)见解析
【解析】试题分析:(1)由得, 对恒成立,则,从而可得结果;(2)先根据, ,求出函数在, , 上的解析式,从而可求得在对应区间上函数值的范围,综合可得函数在闭区间上的值域;(3)由函数的值域为得, 的取值集合也为,当时, ,则,即. 由得,则函数是以为周期的函数,同理可得当时,函数是以为周期的函数.
试题解析:(1)由得, 对恒成立,
即对恒成立,则,
即.
(2)当时, ,
当时,即,
由得,则,
当时,即,
由得,则,
当时,即,
由得,
综上得函数在闭区间上的值域为.
(3)(证法一)由函数的值域为得, 的取值集合也为,
当时, ,则,即.
由得,
则函数是以为周期的函数.
当时, ,则,即.
即,则函数是以为周期的函数.
故满足条件的函数为周期函数.
(证法二)由函数的值域为得,必存在,使得,
当时,对,有,
对,有,则不可能;
当时,即, ,
由的值域为得,必存在,使得,
仿上证法同样得也不可能,则必有 ,以下同证法一.
【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:
1 | 2 | 3 | 4 | 5 | |
8 | 6 | 5 | 4 | 2 |
已知和具有线性相关关系.
(1)求关于的线性回归方程;
(2)若每吨该农产品的成本为2.2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?
参考公式: .
【题目】某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:
p(k2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由,并参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过的前提下,认为“爱好游泳运动与性别有关”
B. 在犯错误的概率不超过的前提下,认为“爱好游泳运动与性别无关”
C. 有的把握认为“爱好游泳运动与性别有关”
D. 有的把握认为“爱好游泳运动与性别无关”