题目内容

已知函数f(x)=b(x+1)lnx-x+1,斜率为l的直线与函数f(x)的图象相切于(1,0)点.
(Ⅰ)求h(x)=f(x)-xlnx的单调区间;
(Ⅱ)当实数0<a<1时,讨论g(x)=f(x)-(a+x)lnx+
1
2
a
x
2
 
的极值点.
分析:(Ⅰ)把f(x)代入h(x),对f(x)进行求导,利用导数研究h(x)的单调区间,注意函数的定义域;
(Ⅱ)已知实数0<a<1,对g(x)进行求导,令g′(x)=0,得出极值点,这时方程g′(x)=0的两个根大小不一样,需要进行讨论,然后再确定极大值和极小值点;
解答:解:(Ⅰ)由题意知:f′(x)=b(lnx+
x+1
x
)-1,f′(1)=2b-1=1,b=1,
h(x)=f(x)-xlnx=lnx-x+1,h′(x)=
1
x
-1,
h′(x)=
1
x
-1>0解得0<x<1;
h′(x)=
1
x
-1<0解得x>1;
∴h(x)=f(x)-xlnx的单调增区间(0,1);单调减区间(1,+∞);
(Ⅱ)实数0<a<1时,g(x)=f(x)-(a+x)lnx+
1
2
a
x
2
 

∴g′(x)=
1-a
x
+ax-1=
ax2-x+1-a
x
=
a[x-(
1
a
-1)](x-1)
x

由g′(x)=0得x1=
1
a
-1,x2=1,
1、若0<
1
a
-1<1,a>0即
1
2
<a<1,0<x1<x2
x (0,x1 x1 (x1,x2 x2 (x2,+∞)
f′(x) + 0 - 0 +
f(x) 递增 极大值 递减 极小值 递增
此时g(x)的最小值为x=1,极大值点x=
1
a
-1,
2、若
1
a
-1=1,a>0,即a=
1
2
,x1=x2=1,则g′(x)≥0,g(x)在(0,+∞)上为单调增区间,无极值点,
3、若
1
a
-1>1,a>0即0<a<
1
2
,x1>x2=1,
x (0,x2 x2 (x2,x1 x1 (x1,+∞)
f′(x) + 0 - 0 +
f(x) 递增 极大值 递减 极小值 递增
此时g(x)的极大值点为x=1,极小值点x=
1
a
-1,
综上:当
1
2
<a<1时,g(x)的极值点为x=1,极大值点x=
1
a
-1;
当a=
1
2
时,g(x)无极值点为x=1,极小值点x=
1
a
-1

当0<a
1
2
时,g(x)的极大值点为x=1,极小值点x=
1
a
-1;
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,还考查了分类讨论的思想,这是高考的热点问题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网