题目内容

已知函数f(x)=b•ax(其中a,b为常量,且a>0,a≠1)的图象经过A(1,
1
6
),B(3,
1
24
)

(1)试确定f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x
≤m在x∈(-∞,1]时恒成立,求实数m的最小值.
分析:(1)利用图象过A,B两点,将两点坐标代入即可求出a,b.
(2)
解答:解:(1)因为函数f(x)=b•ax的图象经过A(1,
1
6
),B(3,
1
24
)
,所以
ab=
1
6
a3b=
1
24
,解得a=
1
2
b=
1
3

所以f(x)=
1
3
?(
1
2
)
x

(2)不等式(
1
a
)x+(
1
b
)x
≤m为2x+3x≤m,设g(x)=2x+3x,则函数g(x)在∈(-∞,1]上单调递增,所以g(x)≤2+3=5.
所以m≥5.,即实数m的最小值是5.
点评:本题考查了指数函数的图象和性质.不等式恒成立问题往往转化为最值恒成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网