题目内容
已知函数
.
(1) 当
时,求函数
的单调区间;
(2) 当
时,函数
图象上的点都在
所表示的平面区域内,求实数
的取值范围.
(3) 求证:
,(其中
,
是自然对数的底).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642278825.png)
(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642294420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642309429.png)
(2) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642325563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642340526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642356697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642372283.png)
(3) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206423871340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642403458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642450264.png)
(1) 函数
的单调递增区间为
,单调递减区间为
;(2)
.(3)详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642465447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642481419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642496510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642512442.png)
试题分析:本小题主要通过函数与导数综合应用问题,具体涉及到用导数来研究函数的单调性等知识内容,考查考生的运算求解能力,推理论证能力,其中重点对导数对函数的描述进行考查,本题是一道难度较高且综合性较强的压轴题,也是一道关于数列拆分问题的典型例题,对今后此类问题的求解有很好的导向作用. (1)代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642372283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642559790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642574645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642372283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642372283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642606560.png)
试题解析::(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642621445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642637928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642652485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206426681272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642652485.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642699570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642715405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642730560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642746360.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642465447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642481419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642496510.png)
(2) 因函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642824426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642840745.png)
则当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642855556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642886518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642902755.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642559790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642949399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642574645.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642980776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642996741.png)
(i) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643027359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643042616.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643058381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643089546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643120465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643152642.png)
(ii) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643167379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206431831019.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642855556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643198528.png)
① 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643230539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643245456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643120465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643276529.png)
则函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643120465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643354443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643370417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643401563.png)
② 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643417550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643604558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643635600.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643651635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643354443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643370417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643401563.png)
(iii) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643900378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643916942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642855556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643963684.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643089546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643105425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643354443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643152642.png)
综上所述,实数a的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642512442.png)
(3) 据(2)知当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643027359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642606560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643120465.png)
(或另证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020642606560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020643120465.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206441501028.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206441661873.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206441972061.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206442121327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206442281441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020644244740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240206442751825.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目