题目内容
如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点.
(1)求证:;
(2)求点到平面的距离.
(1)证明见解析;(2).
解析试题分析:(1)要证两直线垂直,一般是证一条直线与过另一条直线的某个平面垂直,例如能否证明垂直于过的平面,下面就是要在平面内找两条与垂直的直线,从题寻找垂直,是等腰的底边上的中线,与是垂直的,另一条是直线垂直于平面,当然也垂直于直线,得证;(2)求点到平面距离,关键是过点作出平面的垂线,这一点在本题中还是委容易的,因为平面平面,故只要在平面内过作的垂线,这条垂线也我们要求作的平面的垂线,另外体积法在本题中也可采用.
试题解析:(1)因为N是PB的中点,PA=AB,
所以AN⊥PB,因为AD⊥面PAB,所以AD⊥PB,又因为AD∩AN=A
从而PB⊥平面ADMN,因为平面ADMN,
所以PB⊥DM. 7′
(2) 连接AC,过B作BH⊥AC,因为⊥底面,
所以平面PAB⊥底面,所以BH是点B到平面PAC的距离.
在直角三角形ABC中,BH= 14′
考点:(1)空间两直线垂直;(2)点到平面的距离.
练习册系列答案
相关题目