题目内容

如图,在三棱锥中,的中点,的中点,且为正三角形.

(1)求证:平面
(2)若,求点到平面的距离.

(1)详见解析;(2).

解析试题分析:(1)由等腰三角形三线合一得到,由中位线得到,从而得到,利用并结合直线与平面垂直的判定定理证明平面,从而得到,再结合以及直线与平面垂直的判定定理证明平面;(2)解法一是利用(1)中的条件得到平面,以点为顶点,为底面计算三棱锥的体积,然后更换顶点,变成以点为顶点,为底面来计算三棱锥,利用等体积法从而计算三棱锥的高,即点到平面的距离;解法二是作或其延长线于点,然后证明平面,从而得到的长度为点到平面的距离,进而计算的长度即可.
试题解析:(1)证明:在正中,的中点,所以
因为的中点,的中点,所以,故
平面
所以平面
因为平面,所以
平面
所以平面

(2)解法1:设点到平面的距离为
因为的中点,所以
因为为正三角形,所以
因为,所以
所以
因为
由(1)知,所以
中,
所以.
因为<

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网