题目内容
【题目】已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.
(1)求的解析式;
(2)若常数,求函数在区间上的最大值.
【答案】(1);
(2)当时,;当时,.
【解析】
试题(1)第一步:根据图形分析出两个重要的信息,过原点,并且在原点处的导数等于0,第二步,计算出图形与轴的令一个交点,求出被积区间,利用定积分求面积的公式写出定积分,最后计算出;(2)根据(1)求出,第一步:求函数的导数,第二步:求函数的极值点,和判断单调区间,第三步,根据区间,并极大值,并求出,因为,,所以分或两种情况进行讨论,得出最大值.
试题解析:(1)由得, 2分
.由得, 4分
∴,则易知图中所围成的区域(阴影)面积为从而得,∴. 8分
(2)由(1)知.的取值变化情况如下:
2 | |||||
单调 | 极大值 | 单调 | 极小值 | 单调 |
又,①当时,;
②当时,11分
综上可知:当时,;
当时,12分
练习册系列答案
相关题目
【题目】手机中的“运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的朋友圈里有大量好友参与了“运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如下表所示:
男 | 0 | 2 | 4 | 7 | 2 |
女 | 1 | 3 | 7 | 3 | 1 |
(Ⅰ)以样本估计总体,视样本频率为概率,在小明朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有名,求的分布列和数学期望;
(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“运动”评定为“积极型”,否则为“消极”.根据题意完成下面的列联表,并据此判断能否有以上的把握认为“评定类型”与“性别”有关?
积极型 | 消极型 | 总计 | |
男 | |||
女 | |||
总计 |
附:.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |