题目内容
若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是( )
A.(-,1) B.[-,1)
C.[-2,1) D.(-2,1)
C
【解析】由f′(x)=3x2-3=0,得x=±1,且x=1为函数的极小值点,x=-1为函数的极大值点.函数f(x)在区间(a,6-a2)上有最小值,则函数f(x)的极小值点必在区间(a,6-a2)内,且左端点的函数值不小于f(1),即实数a满足a<1<6-a2且f(a)=a3-3a≥f(1)=-2,即解得故实数a的取值范围是[-2,1).
练习册系列答案
相关题目